LIQUID-VAPOUR EQUILIBRIUM AND HEATS OF MIXING IN THE ETHANOL-ACETONITRILE SYSTEM*

Vladimír Dohnal, František Veselý, Robert Holub and Jiří Pick
Department of Physical Chemistry,
Prague Institute of Chemical Technology, 16628 Prague 6

Vapour-liquid equilibrium and heats of mixing were measured in the ethanol-acetonitrile system. The isobaric vapour-liquid equilibrium measurements were carried out at the pressures of 43.35 , $56.44,69.48$ and 86.05 kPa and the heats of mixing were measured at the temperatures of 298.15 , 308.15 and 318.15 K . The individual vapour-liquid equilibrium data sets were correlated by various two-parameter equations and the data on heats of mixing by the Redlich-Kister polynomial. The extensive data obtained for both excess functions, covering the temperature range of 50 K , were correlated successfully by the Wilson equation with the energy parameters linearly dependent on temperature.

Experimental data on the properties of solutions of n-alcohols with acetonitrile are relatively rare. In one of our foregoing papers ${ }^{1}$, we have reported the vapour--liquid equilibrium data in the methanol-acetonitrile system at some conditions. Analogously to this system, practically no experimental data on vapour-liquid equilibrium and only limited ones on excess enthalpy ${ }^{2}$ were available until lately for the ethanol-acetonitrile system as well. This situation stimulated experimentalists so that in recent years, the isothermal static measurements ${ }^{3}$ of vapour-liquid equilibrium at the temperatures $293 \cdot 15,343 \cdot 15$ and 395.15 K and the circulation measurements ${ }^{4}$ at the temperature 313.15 K have been published. In this work we report the results of isobaric vapour-liquid equilibrium measurements at four subatmospheric pressures and of heat of mixing measurements at three temperatures.

EXPERIMENTAL

Substances Used

A superfine absolute ethanol, produced by Lachema, was dried by copper sulphate. After shaking always with freshly calcined sulphate several times, the salt traces were removed by distillation. The final drying of the product was carried out by molecular sieves 3A. The water content in the final product as found by the Fischer analysis was 0.01 mass $\%$.

[^0]Acetonitrile, A.R., produced by Avondale Laboratories, was distilled on an 1.5 m long column filled with stainless steel helices. The product was dried up with molecular sieves 3 A . The water content found by the Fisher analysis was 0.007 mass $\%$.

The measured values of density and refractive index of both the substances are compared with the literature ones in Table I.

Measurement of Vapour-Liquid Equilibrium and Heat of Mixing

The vapour-liquid equilibrium was measured using a modified circulation still of the Gillespie type ${ }^{5}$. In isobaric arrangement, the oil pump is connected via a damping volume capacity to the equilibrium still and controlled by a mercury manostat. Temperature is measured by a platinum resistance thermometer calibrated in situ by several ebulliometric standards (water, benzene). To analyze the equilibrium mixtures, we used interferometry ${ }^{1}$. The measurement of heats of mixing was carried out in an isothermal calorimeter described ${ }^{6}$ in detail before.

RESULTS

The vapour-liquid equilibrium was determined at four pressures: $45 \cdot 35,56.44,69 \cdot 48$ and 86.05 kPa . The activity coefficients γ_{i} and the excess Gibbs energy G^{E} were calculated from the experimental T, P, x, y values in terms of the following relations

$$
\begin{gather*}
\ln \gamma_{\mathrm{i}}=\ln \frac{y_{\mathrm{i}} P}{x_{\mathrm{i}} P_{\mathrm{i}}^{\mathrm{s}}}+\frac{\left(B_{\mathrm{ii}}-v_{\mathrm{i}}^{\mathrm{L}}\right)\left(P-P_{\mathrm{i}}^{\mathrm{s}}\right)}{R T}+\frac{P D_{\mathrm{ij}}\left(1-y_{\mathrm{i}}\right)^{2}}{R T}, \tag{I}\\
D_{\mathrm{ij}}=2 B_{\mathrm{ij}}-B_{\mathrm{ij}}-B_{\mathrm{jj}}
\end{gather*}
$$

and

$$
\begin{equation*}
G^{E} \equiv \frac{g^{\mathrm{E}}}{R T}=x_{1} \ln \gamma_{1}+x_{2} \ln \gamma_{2}, \tag{2}
\end{equation*}
$$

where $x_{\mathrm{i}}, y_{\mathrm{i}}$ are the mole fractions of component i in the liquid and vapour phases, respectively, $v_{\mathrm{i}}^{\mathrm{L}}$ is the molar volume of pure liquid component i, P the total pressure and P_{i}^{s} the saturated vapour pressure of pure component i at the temperature T. The second virial coefficients $B_{\mathrm{i}}, B_{\mathrm{ij}}$ were estimated by means of the correlation by O'Connell and Prausnitz ${ }^{7}$. The saturated vapour pressures were calculated from the Antoine equation whose constants are given in Table I.

The inaccuracies of the measured and further input quantities were estimated as follows: $\sigma_{(\mathrm{x})}=\sigma_{(\mathrm{y})}=0.0005, \sigma_{(\mathrm{T})}=0.02 \mathrm{~K}, \sigma_{(\mathrm{P})}=40 \mathrm{~Pa}, \quad \sigma_{(\mathrm{Ps})}=170 \mathrm{~Pa}$, $\sigma_{(\mathrm{B})}=300 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$. According to the error propagation formula, the variances of calculated activity coefficients were determined ${ }^{8}$ from these inaccuracies. The tound variances were used partly in the consistence test, partly as the weighting factors in the objective function minimized with the aim to find the best values of parameters of correlation equation. The experimental data, the derived values of activity coefficients and their estimated errors are summarized in Table II.

The consistence of the measured equilibrium data was checked by an integral test For isobaric data subject to no experimental errors, should hold

$$
\begin{equation*}
D \equiv \int_{x_{1}^{(1)}}^{x_{1}^{(\mathrm{n})}}\left(\ln \frac{\gamma_{1}}{\gamma_{2}}-\frac{h^{\mathrm{E}}}{R T^{2}} \frac{\partial T}{\partial x_{1}}\right) \mathrm{d} x_{1}+G^{\mathrm{E}}\left(x_{1}^{(1)}\right)-G^{\mathrm{E}}\left(x_{1}^{(\mathrm{n})}\right)=0, \tag{3}
\end{equation*}
$$

where $x_{1}^{(1)}, x_{1}^{(n)}$ is the lowest and highest, respectively, experimental value of mole fraction x_{1}. The value of the integral was determined by the trapezoidal rule. The calculated values of D for single sets are given in Table III. Considering that the experimental data are always subject to random errors, the value of D is not generally equal zero. The permitted tolerance is often chosen empirically. However, it can be determined as a confidence interval by calculation from inaccuracies of input quantities in terms of the error propagation formula. Comparing the values D with their 95% confidence intervals in Table III, we can see that for the first three data sets, the absolute value of D is lower than the value of $2 \sigma(D)$ or comparable. These data can be considered consequently as consistent in the framework of the above-mentioned errors of input quantities. For the set at the highest pressure (86.05 kPa), $|D|$ is fairly small, nevertheless significantly larger than the value of $2 \sigma(D)$, and therefore the experimental errors and/or the errors in further input quantitaties are here apparently higher than the values given above. Let us remark that possible discre-

Table I
Density and refractive index of pure substances at 298.15 K . The temperature dependence of saturated vapour pressures and of liquid molar volumes

-3	Ethanol	Acetonitrile
Density, $\mathrm{g} \mathrm{cm}^{-3}$	0.7852	0.7766
Refractive index	0.78506^{a}	0.77656^{b}
Constants of the Antoine equation ${ }^{c}$	1.35945	1.34150
	1.35955^{a}	1.34154^{b}
Constants of the temperature dependence of liquid molar	7.23710^{d}	6.46476^{e}
volume f		

[^1]Table II
Experimental vapour-liquid equilibrium data

x_{1}	y_{1}	T, K	$\ln \gamma_{1}$	$\ln \gamma_{2}$	$\sigma\left(\ln \gamma_{1}\right)$	$\sigma\left(\ln \gamma_{2}\right)$
$P=45.35 \mathrm{kPa}$						
0.0274	0.0700	330.00	1.057	-0.013	0.023	0.004
0.0579	$0 \cdot 1198$	328.91	0.894	0.001	0.014	0.004
0.0956	$0 \cdot 1782$	327.75	0.841	0.014	0.011	0.005
0.1551	0.2508	326.64	0.748	0.029	0.009	0.005
0.1832	0.2799	$326 \cdot 22$	0.710	0.038	0.009	0.005
0.2341	0.3262	325.73	0.639	0.054	0.008	0.005
0.2873	0.3643	$325 \cdot 37$	0.561	0.081	0.007	0.005
0.3183	0.3832	$325 \cdot 19$	0.517	$0 \cdot 102$	0.007	0.005
0.3886	0.4205	324.98	0.419	0.156	0.007	0.005
0.4351	0.4429	324.96	0.359	0.197	0.007	0.006
0.4846	0.4669	324.94	0.304	0.246	0.007	0.006
0.5309	0.4884	324.96	0.257	0.298	0.006	0.006
0.5885	0.5211	325.02	0.215	$0 \cdot 362$	0.006	0.006
0.6814	0.5693	325.42	$0 \cdot 138$	0.498	0.006	0.006
0.7192	0.5937	325.65	$0 \cdot 115$	0.558	0.006	0.007
0.8051	0.6588	326.66	0.059	0.714	0.005	0.007
0.8697	0.7327	$327 \cdot 90$	0.031	0.831	0.005	0.009
0.8935	0.7707	328.63	0.021	0.854	0.005	0.010
0.9325	0.8295	329.64	0.006	0.980	0.005	0.012
0.9726	0.9163	331.03	0.001	$1 \cdot 125$	0.004	0.022
$P=56.44 \mathrm{kPa}$						
0.0412	0.0910	335.47	0.886	0.001	0.018	0.003
0.0676	$0 \cdot 1419$	334.53	0.874	0.003	0.014	0.004
0.0873	$0 \cdot 1755$	333.86	0.859	0.007	0.012	0.004
$0 \cdot 1212$	0.2210	333.08	0.795	0.014	0.011	0.004
0.1831	0.2897	332.00	0.698	0.032	0.009	0.004
$0 \cdot 2325$	0.3290	331.42	0.611	0.057	0.008	0.004
0.2615	0.3514	331.17	0.570	0.071	0.008	0.004
0.3319	0.3978	$330 \cdot 70$	0.476	$0 \cdot 113$	0.007	0.005
$0 \cdot 3943$	0.4342	$330 \cdot 47$	0.401	0.157	0.006	0.005
0.4941	0.4838	$330 \cdot 41$	0.285	0.249	0.006	0.005
0.5480	0.5106	$330 \cdot 44$	$0 \cdot 233$	$0 \cdot 307$	$0 . \mathrm{C06}$	0.006
0.5887	0.5334	330.57	0.199	$0 \cdot 350$	0.005	0.006
0.6427	0.5584	$330 \cdot 77$	$0 \cdot 148$	0.429	0.005	0.006
0.7073	0.5976	$331 \cdot 14$	$0 \cdot 103$	0.524	0.005	0.007
0.7598	0.6361	331.61	0.073	0.606	0.005	0.007
0.8152	0.6779	332.23	0.038	0.726	0.004	0.008
$0 \cdot 8607$	0.7237	332.90	0.019	0.834	0.004	0.009
$0 \cdot 9007$	C. 7714	$333 \cdot 70$	0.002	0.957	0.004	0.011
0.9290	0.8256	334.56	0.002	0.995	0.004	0.013
0.0451	0.8612	335.08	0.004	1.007	0.004	0.015

Table II
(Continued)

x_{1}	y_{1}	$T, \mathrm{~K}$	$\ln \gamma_{1}$	$\ln \gamma_{2}$	$\sigma\left(\ln \gamma_{1}\right)$	$\sigma\left(\ln \gamma_{2}\right)$
$P=69.48 \mathrm{kPa}$						
$0 \cdot 0576$	$0 \cdot 1264$	$340 \cdot 81$	0.858	$0 \cdot 002$	0.017	$0 \cdot 003$
0.0911	$0 \cdot 1817$	$339 \cdot 70$	0.807	0.008	0.014	0.003
0.1383	0.2411	338.55	0.718	0.023	0.011	0.003
0.2115	$0 \cdot 3188$	$337 \cdot 33$	0.622	0.044	0.009	0.004
0.2423	$0 \cdot 3451$	$336 \cdot 97$	$0 \cdot 580$	0.057	0.008	$0 \cdot 004$
0.2824	0.3763	336.63	0.527	0.074	0.008	$0 \cdot 004$
0.3383	0.4072	336.27	0.440	$0 \cdot 116$	0.007	$0 \cdot 004$
0.3655	0.4247	$336 \cdot 13$	0.410	$0 \cdot 133$	0.007	$0 \cdot 005$
0.4415	0.4654	335.91	0.321	$0 \cdot 195$	0.006	0.005
0.4622	0.4746	335.88	0.296	0.217	0.006	0.005
0.5085	0.5004	$335 \cdot 87$	0.253	$0 \cdot 258$	0.006	0.006
0.5460	0.5214	$335 \cdot 87$	0.223	0.294	0.005	$0 \cdot 006$
0.6406	0.5766	$336 \cdot 11$	$0 \cdot 152$	$0 \cdot 399$	0.005	0.007
0.6772	0.5973	336.27	$0 \cdot 125$	0.451	0.004	0.007
0.7557	0.6483	336.79	$0 \cdot 074$	0.579	0.004	$0 \cdot 008$
0.8141	0.6907	337.33	0.040	0.707	0.004	$0 \cdot 009$
0.8584	0.7341	338.01	0.019	$0 \cdot 808$	0.004	0.011
0.9004	0.7877	338.86	0.005	0.909	0.003	0.013
0.9325	0.8442	$339 \cdot 67$	0.005	0.964	0.003	0.015
0.9496	0.8757	$340 \cdot 20$	0.002	$1 \cdot 014$	0.003	0.018
$P=86.05 \mathrm{kPa}$						
0.0549	$0 \cdot 1273$	$347 \cdot 26$	0.863	-0.002	0.020	0.003
0.0813	0.1622	346.33	0.748	0.013	0.017	0.003
$0 \cdot 1448$	0.2506	$344 \cdot 52$	0.675	0.029	0.013	0.003
0.2153	0.3210	343.23	0.575	0.058	0.010	0.004
0.2412	0.3453	$342 \cdot 89$	0.548	$0 \cdot 066$	$0 \cdot 010$	0.004
0.2946	0.3815	$342 \cdot 32$	0.469	$0 \cdot 100$	0.009	0.004
0.3422	0.4183	$341 \cdot 93$	0.427	$0 \cdot 121$	$0 \cdot 008$	0.005
0.4251	0.4670	341.59	0.332	0.180	0.007	0.005
0.4397	0.4734	$341 \cdot 54$	0.314	$0 \cdot 196$	$0 \cdot 006$	0.005
$0 \cdot 5029$	0.4997	$341 \cdot 51$	0.234	0.266	0.006	$0 \cdot 006$
0.5085	0.5032	341.51	0.230	$0 \cdot 270$	0.006	$0 \cdot 006$
0.5844	0.5462	341.59	$0 \cdot 169$	$0 \cdot 346$	0.005	0.007
0.6097	$0 \cdot 5605$	341.64	$0 \cdot 150$	$0 \cdot 375$	0.005	0.007
0.6810	0.6027	341.93	0.099	0.468	0.004	$0 \cdot 008$
0.7230	0.6320	$342 \cdot 14$	0.077	0.527	0.004	0.009
0.7972	0.6905	$342 \cdot 81$	0.040	0.647	0.003	0.011
0.8561	0.7480	$343 \cdot 51$	0.020	0.765	0.003	0.013
0.8910	0.7893	$344 \cdot 12$	0.009	0.846	0.003	0.014
0.9158	0.8228	$344 \cdot 63$	0.002	0.917	0.003	0.016
0.9545	0.8895	$345 \cdot 72$	-0.005	1.029	$0 \cdot 003$	0.021

[^2]pancies in the estimate of virial coefficients manifest themselves most strongly in case of this data set; similarly, the uncertainty of the temperature extrapolation of heat of mixing (could not be included into $\sigma(D)$) is here largest.
The measured vapour-liquid equilibrium data were correlated by several two-parameter equations: Margules, van Laar, Wilson ${ }^{9}$, NRTL (ref. ${ }^{10}$), enthalpy Wilson (HMW) (ref. ${ }^{11}$), UNIQUAC (ref. ${ }^{12}$), and LCG (ref. ${ }^{13}$). To evaluate their adjustable parameters, the following objective function was minimized
\[

$$
\begin{equation*}
S=\sum_{j=1}^{m} \sum_{i=1}^{2}\left(\ln \gamma_{i j}^{\mathrm{exp}}-\ln \gamma_{\mathrm{ij}}^{\mathrm{salc}}\right)^{2} / \sigma^{2}\left(\ln \gamma_{\mathrm{ij}}^{\mathrm{exp}}\right), \tag{4}
\end{equation*}
$$

\]

where m is the number of experimental points.
The equations based on the local composition concept describe the measured data altogether better than the classical ones. The constants and correlation deviations are given in Table IV only for two most successful equations, viz. the Wilson one

$$
\begin{equation*}
\ln \gamma_{\mathrm{i}}=-\ln \left(x_{\mathrm{i}}+\Lambda_{\mathrm{ij}} x_{\mathrm{j}}\right)+x_{\mathrm{j}}\left[\Lambda_{\mathrm{ij}} /\left(x_{\mathrm{i}}+\Lambda_{\mathrm{ij}} x_{\mathrm{j}}\right)-\Lambda_{\mathrm{j} i} /\left(x_{\mathrm{j}}+\Lambda_{\mathrm{ji}} x_{\mathrm{i}}\right)\right] \tag{5}
\end{equation*}
$$

and HMW
$\ln \gamma_{\mathrm{i}}=-\frac{x_{\mathrm{j}} \ln \left(\Lambda_{\mathrm{ij}} \Lambda_{\mathrm{ij}}\right)}{\left(x_{\mathrm{i}}+\Lambda_{\mathrm{ij}} x_{\mathrm{j}}\right)\left(x_{\mathrm{j}}+\Lambda_{\mathrm{ji}} x_{\mathrm{i}}\right)}\left[1+x_{\mathrm{i}}\left(1-\frac{1}{x_{\mathrm{i}}+\Lambda_{\mathrm{ij}} x_{\mathrm{j}}}-\frac{\Lambda_{\mathrm{ji}}}{x_{\mathrm{j}}+\Lambda_{\mathrm{ji}} x_{\mathrm{i}}}\right)\right]$,
where

$$
\begin{equation*}
\Lambda_{\mathrm{ij}}=\left(v_{\mathrm{j}}^{\mathrm{L}} / v_{\mathrm{i}}^{\mathrm{L}}\right) \exp \left(-a_{\mathrm{ij}} / T\right) . \tag{7}
\end{equation*}
$$

The heats of mixing were measured at the temperatures of $298 \cdot 15,308 \cdot 15$ and 318.15 K in the entire concentration range. The absolute accuracy of measured

Table III

Consistence test of the measured vapour-liquid equilibrium data

Set, kPa	$\|D\| \cdot 10^{3}$	$2 \sigma(D) \cdot 10^{3}$
$45 \cdot 35$	$11 \cdot 1$	$13 \cdot 0$
$56 \cdot 44$	$12 \cdot 7$	$11 \cdot 4$
$69 \cdot 48$	$14 \cdot 2$	$10 \cdot 0$
$86 \cdot 05$	$31 \cdot 6$	$9 \cdot 1$

values is better than 1%. The temperature dependence of h^{E} is increasing and the maximum values of h^{E} at the temperatures mentioned are 1503,1576 and 1654 $\mathrm{J} . \mathrm{mol}^{-1}$. The data reported by Mato and Coca ${ }^{2}$ are in good agreement with our measurements. Shape of the $h^{\mathrm{E}}\left(x_{1}\right)$ curves is the same, only at the maximum a difference of 1.5% (temperature 298.15 K) was found. No other measurements of heats of mixing in this system were found in the literature.

The concentration dependence of enthalpy of mixing was represented by the Redlich-Kister polynomial

$$
\begin{equation*}
H^{\mathrm{E}} \equiv \frac{h^{\mathrm{E}}}{R T}=x_{1} x_{2} \sum_{\mathrm{k}=0}^{\mathrm{p}} A_{\mathrm{k}}\left(x_{1}-x_{2}\right)^{\mathrm{k}}, \tag{8}
\end{equation*}
$$

where A_{k} are adjustable parameters. Number of these parameters p was controlled by the statistical criterion of significance of difference of two variances (F-test). The same weight was prescribed to all points. The experimental data, calculated constants of the Redlich-Kister expansion and standard deviation of correlation are given in Table V.

The numerous experimental data for both excess functions in the temperature range of approximately 50 K yield the possibility of their simultaneous treatment.

Table IV
Constants of the Wilson (upper data) and HMW (lower data) equations, standard deviations $\sigma_{\text {cor }}$ and variance of fit for the representation of single vapour-liquid equilibrium data sets

Set, kPa	$a_{12}, \mathrm{~K}$	$a_{21}, \mathrm{~K}$	$\sigma_{\text {cor }}{ }^{a}$	σ^{b}
$45 \cdot 35$	133.0	$292 \cdot 1$	0.017	1.57
	73.0	$177 \cdot 6$	0.017	1.54
56.44	124.7	$301 \cdot 1$	0.014	1.39
	$72 \cdot 1$	$179 \cdot 5$	0.015	1.43
69.48	$125 \cdot 7$	$284 \cdot 7$	0.015	1.55
	73.4	$174 \cdot 5$	0.016	1.57
86.05	$166 \cdot 2$	233.4	0.032	$2 \cdot 40$
	93.5	$153 \cdot 1$	0.034	$2 \cdot 41$

${ }^{a} \sigma_{\text {cor }}=\left[1 /(2 m-2) \sum_{j=1}^{m} \sum_{i=1}^{2}\left(\ln \gamma_{\mathrm{ij}}^{\mathrm{exp}}-\ln \gamma_{\mathrm{ij}}^{\mathrm{calc}}\right)^{2}\right]^{1 / 2} ;{ }^{b} \sigma=[S /(2 m-2)]^{1 / 2}$.

On the basis of our previous experience ${ }^{8}$ and that of other authors ${ }^{14,15}$, the Wilson equation with the energy parameters linearly dependent on temperature was used for this purpose:

$$
\begin{gather*}
G^{\mathrm{E}}=-x_{1} \ln \left(x_{1}+\Lambda_{12} x_{2}\right)-x_{2} \ln \left(x_{2}+\Lambda_{21} x_{1}\right), \tag{9}\\
H^{\mathrm{E}}=\frac{x_{1} x_{2}}{T}\left(\frac{\Lambda_{12} a_{1}}{x_{1}+\Lambda_{12} x_{2}}+\frac{\Lambda_{21} a_{2}}{x_{2}+\Lambda_{21} x_{1}}\right), \tag{10}
\end{gather*}
$$

Table V

Experimental data on heat. of mixing, constants of the Redlich-Kister expansion and standard deviations of correlation

298.15 K		308.15 K		318.15 K	
x_{1}	H^{E}	x_{1}	H^{E}	x_{1}	H^{E}
$0 \cdot 1611$	0.378	0.1769	0.409	0.1485	0.356
$0 \cdot 1884$	0.423	$0 \cdot 2128$	0.455	$0 \cdot 1754$	0.405
$0 \cdot 2125$	0.454	$0 \cdot 2459$	0.495	0.2082	0.452
0.2319	0.479	0.2754	0.528	0.2403	0.491
0.2640	0.511	0.3362	0.575	0.2643	0.519
$0 \cdot 2918$	0.540	0.3627	0.594	0.2847	0.540
$0 \cdot 3180$	0.557	0.4022	0.603	0.3252	0.572
0.3388	0.571	0.4206	$0 \cdot 609$	0.3629	0.594
0.3692	0.586	0.4546	0.614	0.3976	0.607
0.4487	0.603	0.4683	0.615	0.4480	0.617
0.4688	0.605	0.4950	0.615	0.4983	0.623
0.4948	0.606	0.5403	0.606	0.5660	0.616
0.5798	0.579	0.5886	0.588	0.5733	0.601
0.6208	0.561	0.6198	0.571	0.6207	0.580
0.6633	0.529	0.6606	0.538	0.6609	0.549
0.6928	0.503	0.6962	0.508	0.6904	0.524
0.7188	0.477	0.7275	0.480	0.7159	0.499
0.7439	0.452	0.7939	0.398	0.7474	0.467
0.7719	0.422	0.8282	0.361	0.7773	0.428
0.8149	$0 \cdot 360$	0.8442	0.322	0.8106	0.383
A_{0}	2.4138		2.4520		2.4876
A_{1}	-0.2843		-0.2483		-0.2149
A_{2}	0.4178		0.4138		0.3621
σ^{a}	0.0017		0.0035		0.0031

${ }^{a} \sigma=\left[\sum_{j=1}^{m}\left(H_{\mathrm{exp}, \mathrm{j}}^{\mathrm{E}}-H_{\mathrm{caic}, \mathrm{j}}^{\mathrm{E}}\right)^{2} /(m-3)\right]^{1 / 2}$.

Table VI
Summary of results of simultaneous correlation. Constants of the Wilson equation, mean absolute deviations δ and deviations S_{v} for single data sets, variance of fit σ

$a_{1}, \mathrm{~K}$	b_{1}	$a_{2}, \mathrm{~K}$	b_{2}
776.6	-1.9214	404.8	-0.3715
Quantity	Set	δ	$S_{\mathrm{v}}{ }^{a}$
G^{E}	45.35 kPa	0.004	1.24
G^{E}	56.44 kPa	0.001	0.42
G^{E}	69.48 kPa	0.002	0.49
G^{E}	86.05 kPa	0.003	1.14
H^{E}	298.15 K	0.002	0.44
H^{E}	308.15 K	0.003	0.98
H^{E}	318.15 K	0.003	0.72
Overall		0.003	1.19^{b}

${ }^{a} S_{\mathrm{v}}=\left[(1 / m) \sum_{j=1}^{m}\left(F_{\mathrm{cxp}, \mathrm{j}}^{\mathrm{E}}-F_{\mathrm{caic}, \mathrm{j}}^{\mathrm{E}}\right)^{2} / \sigma^{2}\left(F_{\mathrm{exp}, \mathrm{J}}^{\mathrm{E}}\right)\right]^{1 / 2}, m$ is number of points in the set, ${ }^{b} \sigma=\left[S /\left(n_{\mathrm{G}}+n_{\mathrm{H}}-4\right)\right]^{1 / 2}$.

Fig. 1
Ethanol(1)-acetonitrile(2) system. Comparison of our experimental data with those of other authors. Solid line calculated from our data in terms of the Wilson equation (the constants obtained by simultaneous correlation of G^{E} and H^{E}); experimental points: a 313.15 K , data by Sugi and Katayama ${ }^{4}$, b $343 \cdot 15 \mathrm{~K}$, data by Muthu and coworkers ${ }^{3}$.
where

$$
\begin{gather*}
\Lambda_{\mathrm{ij}}=\left(v_{\mathrm{j}}^{\mathrm{L}} / \nu_{\mathrm{i}}^{\mathrm{L}}\right) \exp \left[-\left(\lambda_{\mathrm{ij}}-\lambda_{\mathrm{ii}}\right) / R T\right], \tag{1I}\\
\left(\lambda_{\mathrm{ij}}-\lambda_{\mathrm{ij}}\right) / R=a_{\mathrm{i}}+b_{\mathrm{i}} T . \tag{12}
\end{gather*}
$$

Four adjustable constants $a_{1}, b_{1}, a_{2}, b_{2}$ were evaluated by the weighted least--squares method on using the following objective function

$$
\begin{equation*}
S=\frac{n_{\mathrm{G}}+n_{\mathrm{H}}}{n_{\mathrm{G}}} \sum_{j=1}^{n_{\mathrm{C}}} \frac{\left(G_{\mathrm{exp}, \mathrm{j}}^{\mathrm{E}}-G_{\mathrm{calc}, \mathrm{j}}^{\mathrm{E}}\right)^{2}}{\sigma^{2}\left(G_{\mathrm{exp}, \mathrm{j}}^{\mathrm{E}}\right)}+\frac{n_{\mathrm{G}}+n_{\mathrm{H}}}{n_{\mathrm{H}}} \sum_{j=1}^{n_{\mathrm{H}}} \frac{\left(H_{\mathrm{exp}, \mathrm{j}}^{\mathrm{E}}-H_{\mathrm{ealc}, \mathrm{j}}^{\mathrm{E}}\right)^{2}}{\sigma^{2}\left(H_{\mathrm{exp}, \mathrm{j}}^{\mathrm{E}}\right)}, \tag{13}
\end{equation*}
$$

where $n_{\mathrm{G}}, n_{\mathrm{H}}$ is the number of experimental values of excess Gibbs energy or excess enthalpy, respectively. The variances $\sigma^{2}\left(G_{\text {exp }, \mathrm{j}}^{\mathrm{E}}\right)$ were estimated from the knowledge of variances of activity coefficients $\sigma^{2}\left(\ln \gamma_{i j}^{\text {exp }}\right)$ and of composition $\sigma^{2}(x)$. To estimate the variances $\sigma^{2}\left(H_{\text {exp }, \mathrm{j}}^{\mathrm{E}}\right)$, the 1% inaccuracy of experimental H^{E} data, i.e. $\sigma^{2}\left(H_{\text {exp }, \mathrm{j}}^{\mathrm{E}}\right)=$ $=\left(0.01 H_{\text {exp }, \mathrm{j}}^{\mathrm{E}}\right)^{2}$ was considered. To minimize the objective function, we used the Marquardt algorithm ${ }^{16}$. The calculated values of parameters and mean deviations of calculated and experimental values are given in Table VI. The quantities σ and S_{v} in this table estimate the ratio of correlation deviations and experimental errors for the entire set and single subsets, respectively. For well-represented data, their value should be close to unity. It can be seen in Table VI that the Wilson equation represents our experimental data altogether in the framework of estimated inaccuracies.
On using the given representation, we can easily compare our vapour-liquid equilibrium data with the data which have appeared recently in the literature. Fig. 1 shows very good agreement with the data of Sugi and Katayama ${ }^{4}$ and excellent agreement with those of Muthu and coworkers ${ }^{3}$.

REFERENCES

1. Dohnal V., Holub R., Pick J.: This Journal 42, 1445 (1977).
2. Mato F., Coca J.: An. Real Soc. Espan. Fís. Quim., Ser B65, 1 (1969).
3. Muthu O., Maher P. J., Smith B. D.: J. Chem. Eng. Data 25, 163 (1980).
4. Sugi H., Katayama T.: J. Chem. Eng. Jap. I1, 167 (1978).
5. Dvořák K., Boublik T.: This Journal 28, 1249 (1963).
6. Veselý F., Hynek V., Svoboda V., Holub R.: This Journal 39, 355 (1974).
7. O'Connell J. P., Prausnitz J. M.: Ind. Eng. Chem., Process Des. Develop. 6, 245 (1967).
8. Dohnal V., Vinš J., Holub R.: This Journal 44, 808 (1979).
9. Wilson G. M.: J. Amer. Chem. Soc. 86, 125 (1964).
10. Renon H., Prausnitz J. M.: AIChE J. 14, 135 (1968).
11. Bruin S.: Ind. Eng. Chem., Fundam. 9, 3 (1970).
12. Abrams D. S., Prausnitz J. M.: AIChE J. 2I, 116 (1975).
13. Vera J. H., Sayegh S. G., Ratcliff G. A.: Fluid Phase Equil. 1, 113 (1977).
14. Nagata Y., Yamada T.: Ynd. Eng. Chem., Process Des. Develop. 11, 574 (1972).
15. Ohta T., Nagata I.: J. Chem. Eng. Data 25, 283 (1980).
16. Marquardt D. W.: J. Soc. Ind. Appl. Math. 11, 431 (1963).
17. Timmermans J.: Physico-Chemical Constants of Pure Organic Compounds. Elsevier, Amsterdam 1950.
18. Brown I., Smith F.: Aust. J. Chem. 8, 1 (1955).
19. Boublik T., Fried V., Hala E.: The Vapour Pressures of Pure Substances. Elsevier, Amsterdam 1973.
20. Wichterle I., Linek J.: Antoine Vapor Pressure Constants of Pure Compounds. Academia, Prague 1971.

Translated by J. Linek.

[^0]: * Part XCIII in the series Liquid-Vapour Equilibrium; Part XCII: This Journal 47, 1029 (1982). In a condensed form originally presented at the CHISA Congress, Prague 1978.

[^1]: ${ }^{a}$ Ref. $^{17} ;{ }^{b}$ ref. ${ }^{18} ;{ }^{c} \log P^{s}[\mathrm{kPa}]=A-B i(T[\mathrm{~K}]+C) ;{ }^{d}$ ref. ${ }^{19} ;{ }^{e}{ }^{\text {ref. }}{ }^{20} ;{ }^{f} v^{\mathrm{L}}\left[\mathrm{cm}^{3} / \mathrm{mol}\right]=$ $=v_{\mathrm{A}}+v_{\mathrm{B}} T[\mathrm{~K}]$.

[^2]: Collection Czechoslovak Chem. Commun. [Vol. 47] [1982]

